
The numerical calculations were carried out with a uniform grid for the variable v with 
N v = 32 readings. The number of checks on the angles e and ~ was chosen, respectively, to 
equal N 8 and N~ (e e [0, ~/2],~ �9 [0, 2~]) with a uniform interval for 8 and ~. The noise 
level of the function f(v, n) was taken to be equal to 1% of the maximum for f(v, n). 

Figures 1 and 2 illustrate the calculation results. The isometric results shown in 
Fig. 1 represent the exact distribution (4.1) in the sections V x = 0 (a), Vy = 0 (b), and 
V z = 0 (c). In Fig. 2 we see the corresponding sections for the reproduced distribution 
F~(u with N e = i0, N 0 = i0. 

The results of the numerical calculations demonstrate the possibility of finding a three- 
dimensional distribution of particles by velocity through the means of computational tomog- 
raphy. 
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A NUMERICAL AND EXPERIMENTAL STUDY OF MULTICASCADE INDUCTION 

ACCELERATOR OF CONDUCTORS 

I. A. Vasil'ev and S. R. Petrov UDC 621.313.17:537.856 

In a number of branches of sciences and engineering it is necessary to develop high 
speeds for the motion of solids, and these can be achieved by placing conductors into power- 
ful magnetic fields. An effective means of accomplishing this with high speeds is the ac- 
celeration of plane annular conductors in a pulsed magnetic field generated by a plane an- 
nular inductor [i]. However, it sometimes is necessary to accelerate three-dimensional bodies, 
in particular, those that are cylindrical in shape. Such conductors can be accelerated in 
a pulsed magnetic field generated by the inductor in the form of a solenoid coil. Multicas- 
cade accelerators of conductors can be based on the inductor system of the solenoid type, 
and these make it possible to achieve high velocities with limited mechanical load on the 
body being accelerated. 

The articles in [2-4] are devoted to a theoretical study of the electromechanical pro- 
cesses encountered in single-cascade accelerators (containing a single acceleration coil) 
with a solenoid-type inductor to which power is supplied from a capacitor battery. A mathe- 
matical model of a solenoid-type inductor system has been developed in [2] involving the 
utilization of a method of integral equations, and where the existence of an optimum mass 
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for the accelerated conductor has been established, such that the kinetic energy of the con- 
ductor may make up more than 50% of the energy initially accumulated in the capacitor bat- 
tery. Using a mathematical model, in [3] we find an analysis, in approximation of circuit 
theory, of the influence exerted by the principal parameters of the inductor system on the 
electromechanical efficiency defined as the ratio of the kinetic energy of the conductor 
at the conclusion of the acceleration to the initial reserve of energy in the capacitor bat- 
tery. It is established, in particular, that a significant increase in efficiency in a num- 
ber of cases is achieved through the presence of an initial velocity for the conductor, which 
must lead to a relatively high efficiency in the convergence of energy in a multicascade 
accelerator. The authors of [4] have undertaken a numerical study of the electromagnetic 
processes in a solenoid-type conductor system, this study based on the method of finite dif- 
ferences, and it showed that the mathematical model proposed in [3] allows us, with accuracy 
sufficient for engineering purposes, to calculate the finite velocity of the conductor and 
the amplitude of the discharge current. On the other hand, the assumption of a uniform cur- 
rent density distribution over the axial length of the accelerated conductor prevents a de- 
tailed analysis of the conductor melting process that comes about as a result of vortex-cur- 
rent heating, which occurs but not identically at various parts of the conductor. Correct 
consideration of the Joule heating is particularly important in modeling the operation of 
the multicascade induction accelerator, when the accelerated conductor enters each sequential 
cascade, having been heated earlier in the preceding stages, with the temperature distribu- 
tion and, consequently, the distribution of electrical conductivity through the volume of 
the conductor exhibiting a complex nature. The models developed in [2-4] can be used for 
a stage-by-stage design of a multicascade accelerator only in the particular case in which 
the inductors of the cascades are separated from each other through a sufficient distance, 
so that their mutual influence can be neglected. 

In the general case, the theoretical model of a multicascade induction accelerator must 
include (Fig. I) the conductor being accelerated, said conductor having an electrical conduc- 
tivity X and n inductors in the form of solenoids with currents il(t)-in(t), connected 
through switches KI-K n to the capacitors C~-C n. The mathematical description of the processes 
in the accelerator must thus take into consideration the presence of n inductors, inductive- 
ly connected to the accelerated conductor and with each other, each of which is connected 
to its own source of electromagnetic energy (the capacitor battery). The expression for 
the vector potential of the "point" circular winding with current at the point B(r, z) has 
the form 

S ~ -ihNh S! K (B, Crh) dS, A(B,t)= K(B,E)](E,t)dS+ ~=~ s,,h 
S~ ,h 

where S 2 and $I, k are the cross sections of the conductor and the k-th inductor, respectively; 
E, G are the instantaneous integration points; K(B, E) is the kernel of the integral expres- 
sion. For the point Hk(r, z), belonging to the k-th inductor, we obtain 

A (Hk, t) = K (Hh, E) ] (E, t) dS + - -  K (Hk, Gq) dS 
S z q = l  Sl'q 81, q 
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(i , N is the current and the number of turns in the q-th inductor). Using the equation q q 
for the current density at point B of the conductor moving along the z axis at velocity v, 
we have the integrodifferential equation for the current density in the conductor: 

?(B) -6 K ( B ,  E) 0r Sl, k dt K ( B ,  Gk)dS + 
Ss = Sl ,h  

it~Nk ~ OK (B, Gh) dS]  = O. 
+ V S.'-~T- az 

1,h 
Sl ,k  

For  t h e  k - t h  i n d u c t o r  we f i n d  

i~(//hWRo,a) wLo,~--~/-- +2~S-71-  ~ r dS K ( Gh, E)----yi---- + 
1,h S S. 2 

O~ ] (E, t) dS + Z dt r dS K (Hq, G) dS = uh (t). 
S1, h S 2 Sl ,q  q=l  Sl,q Sl,q Sl,q 

Here R k is the Ohmic resistance of the k-th inductors; L0,k, R0, k denote the inductance and 
resistance of the capacitor battery, the commutator, and the connecting wires to the k-th 
inductor; uk(t) is the voltage at the capacitor battery of the k-th cascade; Hq is the in- 
stantaneous integration point in the cross section of the q-th inductor. The equation for 
the discharge of the capacitor battery of the k-th cascade has the form 

t 

u~ (t) = - -  Uo,a - -  
0 

ih dt 

(C k is the capacity of the battery in the k-th cascade and U0, k is the charge voltage). 
electromagnetic force accelerating the conductor is determined from the expression 

The 

i hN  h s 

' SI, h 

oK (8, ch) dS. 
Oz 

The equations of conductor motion and for the change in electrical conductivity due to Joule 
heating are written as 

m dv/dt = F, dz/dt = v, O?(B)/Ot = --]2(B)[J?(B)/?o, 

where m is the mass of the conductors; ~0, ~ denote the electrical conductivity of the conduc- 
tor material at normal temperature and the thermal coefficient of electrical conductivity. 
Substituting the integrals with the finite sums according to the formula for rectangles, 
we obtain the following system of differential equations: 

d 
[L] ~F [I] + v @:[L] [I] + [RI] = [u]. 

He re  [L] r e p r e s e n t s  t h e  m a t r i x  o f  t h e  i n t r i n s i c  and  m u t u a l  i n d u c t i o n s  o f  t h e  t h e o r e t i c a l  
c o n t o u r s ;  [ I ]  i s  t h e  column o f  c u r r e n t s  i n  t h e  t h e o r e t i c a l  c o n t o u r s ;  [RI]  i s  t h e  v o l t a g e -  
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drop column in the effective resistances of the contours; [u] is the column of voltages ap- 
plied to the corresponding contours. In calculating the elements of the matrix [L] in ac- 
cordance with [5] the theoretical contours of the conductor and the inductors of the ac- 
celerator are replaced with "thin" solenoids with a current uniformly distributed over the 
length. The cross section of the accelerated conductor is broken down into a uniform grid 
over length and radius into n I contours. The resulting system of linear algebraic equa- 
tions with respect to the unknown derivatives dl/dt has a thinned-out matrix [L], many of 
whose elements removed from the principal diagonal are equal to zero. An effective means 
of solving such systems of equations involves iteration methods. The use of a simple itera- 
tion scheme brings us to the computational algorithm 

The system of differential equations obtained as a result of the solution for the system 
of algebraic equations in the Cauchy form has been solved by a Runge-Kutta method of fourth- 
order accuracy. In contrast to the Lavrent'ev regularization method used in [2], with an 
order of accuracy for the solution no higher than the second, the proposed method enables 
us to obtain a small truncation error and high sensitivity, which is particularly important 
in the modeling of relatively long processes of multicascade acceleration under conditions 
in which the solution, in view of the presence of a multiplicity of successively actuated 
switching devices, exhibits nonsmooth characteristics. Fifteen minutes were consumed on an 
ES-1061 computer to calculate the transient processes in a 20-cascade accelerator, with the 
accelerated conductor broken down into n I = 8 • 8 = 64 contours. 

An analysis of the electromagnetic processes in the device is undertaken on the example 
of a multicascade induction acceleration, such as we have studied experimentally. The ac- 
celerator contains 80 coaxially mounted inductors of the solenoid type, connected through 
air discharges to the capacitor batteries. The synchronous actuation of the discharges in 
conformity with the movement of the accelerated conductor was achieved by having the conduc- 
tor close on the electrodes installed within the channel of the accelerator. Selecting as 
our basis quantities the values 

L ,  : L 'd  1, C ,  -= C'dl ,  U ,  -~ n Uo,k, x,----d 1, 
h = l  

where L', C' are the averaged linear (per unit length of accelerator) inductance of the wind- 
ing and the capacitance: 

L ' - -  c ' =  c , / t .  x ' =  N /Z. 
h = l  h = l  

we obtain a set of dimensionless quantities which determine the parameters of the k-th cas- 
cade: 

d* ---- d J x , ,  L~ = Lo h / L ,  C~ = CklC, ,  

u ;  = R ;  = c , / L , ,  = 

2 2 
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In the case under consideration we have C1*-Cs0* = 2.3, Ul*-Us0* = 1.0, LI*-Ls0* = 0.3, 
R1*-R~0 0.045, Nz-Nz0 = 14, N11-N40 = 9, N41-Ns0 = 4, d* = 0.91, m* = 1250, s163 = 
1.76. 

Figure 2 shows the theoretical relationship between the relative velocity v* of the 
conductor and the time t* = t//~, as well as the experimental points. The divergence bet- 
ween the theoretical and experimental values for the velocity of the conductor on cessation 
of the acceleration amounted to 15% and is basically explained by the fact that no provision 
was made in the mathematical model for the resistance of the air. The total efficiency of 
the accelerator amounted to 17.4% in calculation and to 14.3% in the experiment, while the 
efficiencies of the individual cascades varied in limits of 13-24% and 11-20%, respectively. 
Fragments of the theoretical curves for the discharge currents in the 21st through 25th cas- 
cades (i21"-i2s*) and the total current flowing in the conductor (i*) can be seen in Fig. 
3, where ik* = ik/i ,, i, = U,~C,/L,. 

Figure 4 shows the theoretical distribution of the current density j* = j/j, through the 
cross section of the conductor as well as the theoretical distribution of the magnetic flux 
~* = ~/~, in the accelerator channel. Here j, = i,/x, 2 , ~, = ~0i,/x, 3 , with the curves cor- 
responding to the maximum discharge current in the 10th cascade. Figure 5 shows the theo- 
retical and experimental curves corresponding to the melting points of the conductor for 
various velocities v*, while the dashed line represents the limit at which the conductor 
melts at the end of the acceleration, a value derived experimentally. According to the cal- 
culations, when the number of cascades is increased above 80 the limit velocity corresponding 
to the destruction of the conductor as a result of melting would amount to v* = 0.18. Thus, 
experimentally we reached an acceleration velocity amounting to 78% of the maximum velocity 
in terms of the melting conditions. 
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